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ANALYTICAL AND EXPERIMENTAL STUDIES ON
GYROSCOPIC VIBRATION ABSORBERS

SUMMARY

A general theoretical analysis is made on three different
gyroscopic configurations for possible use as vibration ab-
sorbers, The analysis provides for two degrees of translational
freedom and three degrees of rotational freedom for the absorber,
Computer programs have been written which permit calculations of
(1) null and natural frequencies for a given set of parameters;
(2) responses in the direction of excitation and orthogonal to
it; and (3) responses of the gyro, i.e. angular oscillations of
the gyro resulting from vibrations of the structure to which
it is connected,

Experimental results have been obtained for two configura-
tions described as 'Perissogyro' vibration absorbers, Comparison
with corresponding theoretical results indicate reasonable agree-
ment, The analysis and experiments confirm the possibility of
obtaining antiresonance in two orthogonal directions simultaneously.
Details of electronic circuitry required to synchronize the gyro
speed with the excitation frequency are presented,

This study, while confirming the feasibility of gyroscopic
systems for use as Synchronous Vibration Absorbers, has brought
to light certain practical problems that are likely to be en-~
countered during actual use, These problems observed during
experimentation pertain (1) to the conditions of self-excited
oscillations of "Perissogyro' vibration absorbers; and (2) to
the apparent transfer of energy to a yaw motion of the device
when vibration in orthogonal directions are simultaneously nulled.
A general discussion of these problems together with recommenda-
tions for further research is presented,

This report is in two parts. The first part discusses
Synchronous Vibration Absorbers, The second part is devoted
to an analytical study of parallel absorbers, where the absorber
consists of an undamped mass together with a damped mass, The

summary of research pertaining to the second part is presented
separately in Part 2,
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INTRODUCT ION

The concept of vibration absorbers can be traced back
to 1909 when H, Frahm invented a simple device which is com-
monly referred to as the conventional dynamic vibration ab-
sorber, In its simplest form, the Frahm absorber consists
of an auxiliary undamped spring-mass system attached to the
vibrating mass at a point where it is required to react the
effective excitation force, If the natural frequency of the
absorber mass is chosen to be equal to the frequency of the
excitation force, then the main mass does not vibrate at all
and is said to attain a null, Although Frahm absorbers are
quite popular in use because of their simplicity, their effec-
tiveness is rather limited to situations where the excitation
frequency is nearly constant., In fact, the addition of an
absorber mass introduces another degree of freedom to the sys-
tem and thus another resonant condition which might do more
harm than good. In general, the excitation frequency varies
over a range which renders the conventional absorbers useless,

The purpose of many investigations that have followed
since the introduction of Frahm absorbers has been either:

(1) to invent entirely new and better devices in
the hope of replacing the conventional absorber,
or ‘

(2) to improve the effectiveness of the conventional
absorber by suitable modification,

Pendulum absorbers, impact dampers, gyroscopic vibration
absorbers are but a few of the new devices that belong to the
former group. However, the only modification considered so
far in the latter group is the addition of damping to the ab-
sorber mass,

Part 1 of this report presents the theoretical analysis
of three configurations of gyroscopic vibration absorbers,
Also, experimental results are included for two configurations.
The purpose of Part 2 of this report is to examine a modifi-
cation of the conventional absorber. Such a modification
consists of adding, in parallel, a subsidiary undamped ab-
sorber mass in addition to the damped absorber mass,



The idea of utilizing gyroscopic effects which result
in a completely inertial/conservative means of reacting a
sinusoidal force originated in the Kaman Vibrations Research
Group., The invention which is patented as Gyroscopic Vibration
Absorbers is due to W, G. Flannelly1 of the Vibrations Research
Group at Kaman Aircraft, Division of Kaman Corporation, Pre-
liminary research on gyroscopic vibration absorbers conducted
under a contract for the National Agronautics and Space Admin-
istration has already been reported<,

The analysis presented in Reference 2 established the
unique characteristics of gyroscopic systems used as vibration
absorbers, For example, it is shown that gyroscopic vibration
absorbers lend themselves to synchronization so that the gyro
speed may be made to adjust itself suitably when the forcing
frequency varies, This obviously is a tremendous advantage
in that these devices can theoretically provide an infinite
bandwidth so that a null is always attained no matter what the
driving frequency is. Admittedly more tests and a thorough
parametric study are necessary before the device is developed
and put to actual use, However, the potentials of gyroscopic
configurations for use as dynamic absorbers appear to be very
promising., Further, the possibility of using two absorbers in
parallel, one damped and the other undamped, has shown that it
is possible to obtain an undamped null in a dynamic absorber
system which exhibits a well-damped peak., These and other
aspects of gyroscopic vibration absorbers and parallel damped
absorbers are examined in considerable detail in the present
investigation,

Figures 1, 2 and 3 show three of the possible configurations
of gyroscopic systems to which the theory presented in Part 1
of this report is applicable. In Figure 1, the gyro wheel,
the drive system, the cross pivots, all rotate in unison,
Such a device is designated as 'Perissogyro Vibration Absorber",

In Figure 2 is shown a device which is similar to the
configuration shown in Figure 1 in all but one respect, i.e.
the gyro-wheel in this case can rotate relative to the drive
system, Figure 3 shows a configuration in which two inertial
elements are arranged such that their pivotal axes are at
right angles to each other, As in Figure 1, the inertial
elements and the pivotal axes rotate together., This device
is designated here as "Coriolis Vibration Absorber",

1"Gyroscopic Vibration Absorber" by William G. Flannelly, U,S,
Patent No, 3,313,163, 11 April 1967,

2"Analytical Research on a Synchronous Vibration Absorber' by
William G, Flannelly and John C, Wilson, NASA Contractor
Report CR-338, December 1965,



Figure 1, The Perissogyro Vibration Absorber
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Figure 2, Alternate Configuration of the
Perissogyro Vibration Absorber
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Figure 3, Coriolis Vibration Absorber



In this report, the governing equations of motion for all
the configurations are derived using Lagrangian technique, The
approach used in this investigation is different from the con-
ventional procedures in that the body attitudes are referred
to a fixed frame of reference as opposed to Euler's desScription
of motion in terms of body angular rates. The analysis is quite
general and assumes two degrees of translational freedom and
three degrees of rotational freedom for the gyroscopic systems,
Spring rates are included in the analysis for all pivots and
along the translational degrees of freedom, The resulting
equations of motion are a coupled set of nonlinear ordinary
differential equations for each gyroscopic configuration,

Several simplifying assumptions, based on the fact that
the devices treated here should be of practical use, reduce
the governing equations to a set of linear differential equa-
tions, the solutions for which can be written readily. Numer-
ical results, obtained during the study, are presented graphically,
The relative merits of the devices considered here are discussed
briefly,

The circuitry needed to obtain linear synchronization in
Perissogyro Absorbers has been designed, and a brief discussion
provided in the report,
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ANALYSIS

"Perissogyro Vibration Absorber™

Figure 4 represents a fixed coordinate system of reference

Xf» Yt,» Z¢  which cannot rotate but can translate in the X,, Y
directions, £’

The coordinate system X, Y,, Z, whose origin coincides
with that of the fixed system is fixed to the body of the gyro
and moves with it. The center of gravity of the rigid body is
assumed to be located at "h'" units from the origin . The final
position of an element of mass dm at any instant may be expressed
in terms of the fixed system coordinates, The body assumes its
final position at instant ""t" through a set of three Euler-angle
rotations given in the following sequence: rotation about #, ,
rotation © about Y, (i.e, rotatedY axis) and finally rotation

about Xy (i.e. rotated X axis). In addition, the rigid body
may undergo translatiouns in the X# and Y¥ directions,

Representing the matrices of transformation associated
with the Euler-angle rotations ¢ ,0and¢ by ,® andgd ,
the coordinates of a mass particle referred to the fixed system

may be expressed in terms of the body coordinates by the matrix
equation,

K Xy
gy = q) @CP Y%
Z Z
¢ y b
(1)
Where
Gsy -Smy ©
(P = | Sy Co¢ ©
o o 1
(2)
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Figure 4,

Coordinate Transformation



(o 6 0 S 6

-—Smg o GNG

(3)
and

Co:t? .;S'A?

O

0 34~? Cor @

(4)
Upon multiplication of the matrices

— , 4
may be shown to be l]") @ ? Xle ’ rF an Z_)(‘_
X‘Fz Xo+xb CBC'{/+ Yb (§¢$BC(P—S‘",C¢)+ZL(S¢Sw+$“,cw C¢)

Ye= Yo+ X CoSy + i (SpSe Sy tCpce) + Zu (5 SpCp= 5 Co)

(5)
where 5¢ represents Sin¢y , CV represents Cos ¥ and so on
for the other variables ¢ and 9 . It may be noted that the
displacements X, and Y%

in the X and Yp directions have been
added to the appropriate equations of transformation.

With the
coordinates of any mass particle in the rigid body expressed in
terms of the fixed system coordinates,

the velocities X#, f? and
Z¢ may be computed, Thus

X# = X,'{‘o(lxb'*’,é,n + b;Z-L

YP = \'ﬂ. tL X+ Y T E

°

(6)
Z-p = 0(3 XL-{—FJYA"”‘XJzL

13



where

0(!= _(SWCBLP—I-CWSBé)
0(1:: quceq.l"s(ystgé
0(3::. ”Cee

- B = (cq,c?+3q)sg S?)@—cwces?é-.(c¢sgc?+5’q,s¢)7’
B,o= (Cpsssy —S‘(VC?)({J-#S(Pcsf?é+(5¢396?fcws?)é
£3 = (4 Cﬂ,, (F S’ o

7 = (¢y ?_gwyec?,)cf/ + cq,cec?é +(Sycy—CySsS,) @

)
i

A (S'lf;.y?'f‘c(ysgc?)q'i-f‘gwcecfaé“(5¢565?+C‘PC¢)¢

(7)

The expression for the total kinetic energy may now be
derived by calculating

.7' .2 . 2
T £ ( 4
= 3 ‘y Xk +‘§é 1‘:5¢') m (8)
The calculations to obtain-r.are rather laborious but straight-

forward Omltting the details of algebraic manipulations,
X +q¥.fz€ may be shown to be (omitting the subscripts

on XYy, £p)

14



;;:Jr - q’f{gfx% (¢;+s;s,,z) Y+ (S<;+C¢zsez) ZZ} +
SICts IR+ ¢ LI EF - 265,506 (r22)
25,06 (rhE) + 22 [:;’(o{(cq,s? ~Sp So c¢)¢+
Cy o€y & + (Sy G CpSsSp) § + Yo 1 (S +eycy) P

+8,Cic B — [SySsS, +CuC ]
LYQ(/) ((Paso ‘V¢>¢} . (9)

The potential energy stored in the system is assumed to
be solely due to the spring rates in the pivots and along the
X; and Y¢ directions, i.e. the contribution to the total po-
tential energy from gravitational forces is neglected in the
analysis., Thus, the expression for V may be written as

[ 2 2 2 " 2
\ = T 1 Ke®F K@ + KXo H Ky T 1 o

where Kﬁ, Ky are the spring rates in the pivots along the 8
and ¢ directions, and Kx, kY represent the spring rates along
the X, Y directions,

The body axes are assumed to be along the principal axes
of inertia of the rigid body. Thus, in calculating the kinetic
energy integral from Equation (8), all the product of inertia
terms are assumed to be identically =zero,

The governing equations of motion in terms of the gener-
alized coordinates {6, ¢, x, and , may now be derived from the
Lagrangian L, using

p(, 9L . DL &
At ’%j 27 ¢
I [

(11)
where ZZ is a generalized coordinate and 6& the corresponding
generalized force., The resulting equations are a set of coupled
nonlinear ordinary differential equations and are given below,

15
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In this investigation only the linearized versions of the
set of Equations (12) will be studied, As suggested earlier in
the Introduction, it is believed that in order for these devices
to be useful in practice, the oscillations ¢ and® should be rea-
sonably small, Furthermore, the coordinate ¢ will be dropped as
a generalized coordinate and the spin velocity, s, 1s assumed
as a constant designated as-2 ., Thus, the resulting equations
are a set of coupled linear differential equations as shown below,

T, 6+ (L-Ty) L6 + N ¢ (LHL,-L,) + Ky O - Mh (CyXtSy),) =2
) 5 - } (13)
Lot (LT)Lp—16(5+5%) + K¢ +Mh(Spf-c, 5, ) =0

/7).(’0 + Mh {C¢é-+5w5—42{5¢¢+c¢ 6}-25}0-/1.5.1*26},-492}7&,(}% =//’r
TS, +Mh 1Sp6 - Cp #a'(cpp -5y0) 420,262y 21K ), =0

The above set of equations, although simplified consid-
erably from its original form (12), cannot be solved easily
because of the periodic coefficients Sin¢ and Cosf{) . Further
simplification may, however, be accomplished by proper trans-
formation of coordinates., Such a transformation may be defined

as
‘gg = Cyb
Fa = S,Su ?

The first of Equation (13) may be now multiplied by C¢
and then bY-Sp to obtain _

L, (% +a43, -2 5.) + 0 (T-Tx) S+ A (Iy ¥ Ty-Tz) (%, +LFs)
t Mh (Cy fotSpcyle) +KeTy = 0 (15)

I, (5)-24F,~02%,) + " (Tp-T0) ¥+ (Ix+Iy~Iz) (35 -47e)
+ Mh (S¢°Y, +Spcp¥s) + K, 5, = 0 (16)

17



Similarly the two equations obtained from the second equa-
tion of (13) may be shown to be

I, (g, +20%s=A5,) +0°(T3-1,) 5, —L (Tt T,-Ta) (5,445)
+ Mh (Syeyho=cy'sy) + KpSy = o an
I, ($5-20%,~07F:) 1 2" (T3 1) G L (Tt T,Te) (§)-4%)
+ Mh (S %o =Sy Gp ) + KpTs = ¢ 18)

Adding Equations (15) and (18) and subtracting Equation
(16) from (17), the resulting equations may be shown to be

v . .o =0
I¥72+_/L123+th01—K7 (19)
Ixf "'-—ﬂ.Iz_/? + MA YD +1<r=0 (20)
where the new coordinates 77 and ¥ are defined by
77 =’;z+ $3
T=5-5 (21)

—~ In deriving Equations (19) and (20), the inertias J, and

y have been assumed to be equal and the spring rates <5 and
ke have also been assumed to be the same, i.e, Kp=kp=K .
Fiﬁally, the last two equations of (13) may be shown'to reduce
to

p‘qi&,+Mh7’?+Kxxo=Fx 22

M%-’*th'f‘l()’)/o-;o (23)

Thus, the simplified set of linearized governing equations
of motion for the Perissogyro configuration A, may be written
as

18



N+ JLIE3‘+th + £ =0

Lx Ix
Tf - A ~Z§ 7 4 Mh )/ KT =0
f,( ( I:X 2 Ix
Mh ey,
T+M7+ Y, = 0
(24)
Under steady-state conditions, the solutions for 7 , 7T
Xs, Yo may be assumed as
fO: e cw &
-f:.- .r’o e‘:wé'
Xp = Xa/ e-tmé
W
Yo= Ny e™

(25)

Substitution df the assumed form of solution in the set
of Equations (24) yields the matrix equation

-

2
Ko i Tz ao - Mho 0 /7] °
IX Ix IX
7
-t _I:.g-/l_lf) K -0 O —~Mho 'S 0
= 7 ;_
-Ma X 2z
_wl 0] KX M o 0 Mh
Mh
* K-
0O - ) o 2t 7; 0
- Mho A\ Ji2e



From Equation (26), it is now possible to solve for the
displacements in the X@ and Yy directions for a given {x .
Also, the conditions necessary to obtain a null (zero displace-
ment) in the Xt direction may be derived. Under these condi-
tions, the effect in the 7& direction may be determined,

Equation (26) may be written as

[D] {e.}=45F (27)

where D is the coefficient matrix, Z; is the column matrix of
the generalized coordinates and {, , the column matrix of the
generalized forces,

The natural frequencies for the system may be obtained by
solving the characteristic equation |p/=0 where|D| represents the
determinant of the coefficient matrix., Omitting the details of
calculations, the expression for [D| may be written as follows:

g 2
D= 5;40 +Czwé-/—qgao4‘+c4,_w # Co

where
_ 2
- CMA M
/= IX M,

Co S Ay Rty 2KAY (23 i
2 Ty Mk Mh Z, Mh Iy M

L. ==
C. = Kx'f’/(r ’_S_/ﬁ — _/ZZI}M_ ZKM kx/(r ( )

3 Mh Iy MhLy Ltk

= 2-‘: 2 2
KKy, 2k _ KM KAy KM L4 1 &
¢+ 7 mh | M Zmh | mh\Lmh  Z mA

2

K~ Ky Ky

IXZ MEbE

(29)
20
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Similarly the expressions for X, and Y, may be shown to
reduce to

D of(mh-B) -t (K2 B AL - )

R I, mh Iy Iy mh I- Mh Mh
= 2
..;{_K_'m_, - ‘S_r_(—’ffz_z+ 2..‘3)} F K &y
I Mh  Mh I} Ix I mh  (30)

and

a—

:DYo = _./l. Ii; M/\.(‘DS—
fo Iy

(31)

It may be noted from Equation (31) that the displacement
along the Y direction can never be zero, Therefore, even
though a null is attained along the X direction, the system
may have oscillations in the orthogonal direction. This im-
poses a limitation on the usefulness of Perissogyro device.
However, it is clear from Equation (31) that the displacement

¥, is linearly related to the speed of the gyro wheel. This
property will be used later to discuss the development of the
so-called Double Perisso,

Equation (30) when equated to zero represents the null
equation for the system under comnsideration,

Equations (28), (30) and (31) are quite general in that
they include the effects of spring rates in the pivots as well
as along the Xy , % directions, The solutions for these equa-
tions have been obtained with the aid of a digital computer,
They can, however, be simplified considerably if the spring
rates are assumed as zero and if =M .

Thus, when K=o=Kyx =Ky » and 117'.—-/44 , the null equation
is given by 2 2
z /e

¢J .

7 Ly (Ly-ma*)

(32)

and the equation for the resonant frequencies may be shown

to reduce to
2

-—
&jz S Lz
T (Le-ma)* (33)

21



2 2
Thus ( Wn ) _ /= M
AN

(34)
i, e, 60724 NJL

(35)

An examination of Equation (32) indicates an interesting
contrast with conventional absorbers in that the null frequency
depends on the magnitude of the absorber mass,

Equations (30) and (32) indicate that the null frequency
is related to the speed of the gyro wheel. Such relationships
are characteristic of gyroscopic systems and provide the unique
advantage by means of which the absorbers may be synchronized,
Thus, with proper synchronization of the angular velocity of
the gyro, the absorber will produce an antiresonance on the
structure to which it is attached, at all values of the driving
frequency., Details of such synchronization will be presented
in the latter part of this report.

Numerical results obtained by solving the null and the
characteristic equations for the single Perissogyro are pre-
sented graphically. Comparison has been made with the results
obtained by experiment, A discussion of the results and con-
clusions will be postponed until after the analyses for the
other configurations are presented,

The preceding analysis has shown that while the Perissogyro
is capable of producing antiresonance in the direction of the
forcing function, oscillations will always occur in the ortho-
gonal direction. These oscillations may be of relatively small
amplitude but they are nevertheless undesirable, As suggested
earlier, the vibrations induced in the ¥ direction are linearly
related to the gyro angular velocity 2 , This leads one to
believe that by superposing the effects of two Perissogyro
vibration absorbers, the gyro angular velocities of which are
opposite to one another ( 4/2,= -2, ), the effect in the y
direction may altogether be eliminated, Such a device is
designated here as '"Double Perisso' and consists of a set of
two Perissogyro vibration absorbers attached to the vibrating
structure. The gyro wheel in one of the sets rotates in a
direction opposite to that of the other, i.,e, 4Z,=-42, R
The analysis of such a combined system is presented below,

22



Since there are two absorbers attached together to the
vibrating structure, there are, in general, six generalized
coordinates, i.e. 6, 82, ¢, ¢, Xo and Y, ., It will be
shown below that these reduce to three generalized coordinates
when the two absorbers are identical in all respects,

From the analysis presented before, the governing equations
may be written readily., Thus, the equations for the variables
&; and ¢; are

Z 0y 4176, (Tz-Ix) +Mh(CpXs £5,),) + A @, (25-T3) +K8; =0

. z > _ . —_ . _
I& @ +-LP (IE~IX) +Mh (‘SVXD C)"/b) =128, (JIX_—E) *‘/{’%"‘o (36)
€« =/2

As before, in order to remove the periodic coefficient
from the set of Equations (36), the & equation may be mul-
tiplied by Cyp and the ¢, equation by Sy . The resulting
latter equation may be subtracted from the resulting former
equation to obtain

Ly, + I 45, R, A Sy =0 -

Similarly, the EQ equation may be multiplied by5¢ and the %
equation by Cy . Addition of the resulting set of equations
may be shown to reduce to

-’-C7 T3, - LD, +KS, ~Mh)o=° (38)

The following definitions of the new coordinates have been
used in deriving the Equations (37) and (38)

77, = f;.z -7,
32 5. 1%, (39)
where
?,,_ = 6,5y
§;z = 0z Cyp
$32= P, S (40)
$42 = FaCy

23



The governing equations in the X, Yo direction may be
derived assuming that the forcing function %; is equally shared
by the two absorbers. Thus, in the X, direction

M Ko + MO, +Ke Xy = Frfy
corresponding to the Equation (22) of the single Perissogyro,

i.e. [ .
Ml t MHT), o+ kxXa = P4,
Addition of the above two equations yields

In Equation (40)M includes the effective mass of the struc-
ture at the point of attachment, the mass of the two gyro discs
and their drive systems, By a similar procedure, the equation
in the Yy, direction may be reduced to '

MYy +mh (5-5,) +24 5, = © )

The governing equations for the double perisso may now be
summarized as follows:

L), + LIS, + K7 + MbX, =o

il
N

Lo, # -0 IS, + KDy +mh T
Ixf;n_dzzéa%kfz—/%j{ =0
Lo — L)) +K3 41 Y=o
M, +/vz/,(/2’+7};)742/<,,x0=§
M Lot M4 (3-T,) #26 ) = 0

(43)
Assuming as before steady-state solutions for the variables
R 77205, S22 Xo and ), , the resulting equations in

matrix form may be shown to be:
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Computing'%,from the above matrix equation, it may be shown
that 3, is identically zero, Using the fact that Yo=0 , the
governing equations may be reduced to a simpler set as follows:

From the last equation of the set (43),'§;=fl . Then 71,

may be shown to be equal to 7, from the third and fourth equa-
tions of (43). Then the set (43) reduces merely to

Ix77+ NT,S + K7 +Mh X, =0

Iyt —AZ37 + K3 =0
MK+ 20Mh7 +2KeXe =y (45)

As before, a steady-state solution yields the matrix equa-
tion (46), i.e,

— 2 . 'R .
K-Q'T, c I,ad ~MhD 4 0
~L A K- o I, o T =40
2> —_ 2
(46)
From the above equation X;/f&f may be shown to be
) 2 2 2 2.2
Yo (K-Q Ix) — 9 1z

- = - 2 2. \% z 2 9 RERN T
b (2Keme) P (K-3'5)- LA f= MR (koL o
from which the null equation may be readily written as
z _4 2 2 ;)7. 1—
I, 0"~ (AK I+ )@+ K =0 48)

The null equation is independent of linear spring rates
and mass ratio# . The characteristic equation from which the
natural frequencies for the system are computed may be shown
to reduce to

- 2 2 - — 2% 2 22
OF (amK I M I ) + o (2K I +2KMT, +M LA -2KMh)
2 A 2 =2 2
~ o (MK + 4 KKy I FAKI, ) +2K Ky = 0 (o)
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Equations (48) and (49) reduce to very simple expressions
if the spring rates are set to zero, Thus, the null and natural
frequencies for the case when the spring rates are zero may be
shown to be

2.
2 2/1‘3
Wy = “’Z&'E;)

(50)
and = 2 2
w; = M_""Z s
— 22
Zx (M Zy -2#%*)
(51)
if ﬁfis assumed simply as 24 , further simplification
results, i.e, 2 2
n 2 IZ" 2
i = — -
Ly (Zx-ma%) (52)

Thus, for the special case (i.e. M =2/ 6 Kk=o0=Kky )

/ep \* Mh®

A, — /.._ .
{ “n / Ly (53)

This ratio is exactly the same as the ratio obtained for
a single Perisso under the same assumptions,

It is observed that the null frequency equation for the
single Perissogyro (for the special case) coincides with the
characteristic equation for the corresponding double Perisso-
gyro. A simple explanation for this coincidence may be offered
as follows,

When the null frequency is attained in the single Perisso,
displacement along X direction is zero, while the displacement
along)/ direction may take place. The force along X direction
is reacted by the absorber, and f} =0 o

When the double Perissogyro is oscillating at its natural
frequency, the displacement along X direction is taking place,
displacement along‘Y'direction being always zero, The force
along X direction is zero while f, is being reacted by the
absorber, Thus the governing eq&étion should be the same since
X and }f are interchangeable,
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The coordinates /) andJ7 may also be obtained from Equa-

tion (46) in the form/
W E . cwt
N=ae’ € =cde
/ /
where

24 = Mho” (K-Txw?)

|

3
D, b 1;5 Mp /L

(54)

;Zb in the above equation is given by the characteristic
Equation (49),

Since 57/_—. &<y + @ Sy
Si= 8% ~ ¢y

then (55)
& = Ty + 35y
@___ ”/gfﬂ'ﬁS’/C;p and
i.e. (9/: 6.{‘*’6(46%7%545}//)
Twe —
@ = €T (asy —idecy)
(56)

Using the trigomometric identities for CV,and Spr, @, andgz
may be reduced to

6 - <@g§él)€3{(¢o¢=a)t " (rﬁgié) E?t:(aJ—AZ)fT

(57)
. _sath e-c-(oo—f—../z)f- (_ﬂfé_) e'c(w-——d)é‘
€ ?I ="z - 2 (58)

As may be observed from Equations (57) and (58), two wave
forms whose frequencies may differ considerably are superposed
to obtain 6, and ¢ . Thus when the ratio®-42)/uyse)is reasonably

large, the so-called 'beat phenomenon' results,
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ALTERNATE CONFIGURATION OF THE
"PERISSOGYRO VIBRATION ABSORBER"

Figure 2 shows schematically the configuration whose
analysis is presented below, The gyro disc in this case
rotates relative to the shaft on which it is mounted so that
the /L vector is now situated along the shaft perpendicular to
the plane of the gyro wheel, The shaft itself is mounted on
a cross pivot so that the device may oscillate in two direc~-
tions perpendicular to each other, The motion of this con-
figuration resembles, in many respects, the motion of tops,

Y z, Z4
Zy

Figure 5, Coordinate Transformation

As before, the final position of a mass element situated
on the gyro wheel may be obtained by successive Euler-type ro-
tations given in the following sequence: rotationu¢ about Xg£ ,
rotation § about ¥, (i.e. rotated ¥ axis) and rotation (/ about
Z, (i.e. rotated # axis), The fixed system of coordinates

Xe,Ye, 22 can translate in the Xz and %ﬂ directions, The
directions of the cross pivots coincide with the Xz and )
directions, The centroid of the spinning body may be assumed
to be located at A/ units from the origin O,

The matrices which transform the coordinates of a mass
element from the body axes into those referred to the fixed
axes may be represented byf ,@ and (P so that
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z Z
where # L (59)

1 0 0

@ == fo) C? _S(f

\° ¢ S

C(9 0 Se

® = [ « °

- 5‘9 o Ce
CV "S.y/ o

= S ¢ o
N Y -
o {

and ¢, 6, (/ are rotations about Xf'z Y, €3,  axes as shown
in Figure 5,

Upon multiplication of the matrices ( )
and Z{ may be shown to be (D g? P &f;)&

X{Z = X, + CyCo X, ~SpCo ¥y + 36 Zy
Yp =Y, + (SyCptCySs Sp) Xy + (CyCp=SySs Se ) Vo~ G %
(61)

7. =/
£y (SySp = CpCols) X+ (CosptSpSo ) n+ G ¢,
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with the same notations as before,
0 As before, the procedure would consist of computing
X# 7@13} to derive an expression for the total kinetic

energy 'T. Omitting all the intermediate calculations,
may be shown to reduce to: 2

T B £ T T e (3R )

fsg_z;)?w%(c 6X~Cy ;»;;,+59 em
(62)
and the potential energy b/may be written as

2 r4 2 2
\J/z}_L(K€‘9+kgp§” +/<XX,)+k/)',) (63)

In the above computations, symmetry of the spinning body
is assumed to exist so that the product of inertia terms are
set to zero, Also, the moments of inertia IZ R _'z.‘ are referred
to the axes passing through the origin O .

The governing equations of motion for the configuration
may now be written by forming the Lagrangian function T-V,
Again omitting all the details of calculations, the equations
of motion may be shown to be:

4; + ( éfjb + G é};) = 0 .

Jf 6 %“/WV7('QQX"f5} ?,};/)-f /‘77";5) C fb G,z ﬁy?’fgkb
(.LLZSG+I),C9);’07LZ(~ 7)) %G 76 +S, I, 0+ L L 8- Mp GG, ) ho =
M X+ M (Co6-587) +k Xy = A

M )27‘“/%{595 6 - 7;'7‘5’95’?(?":&57% 255%;5,91;%,(—//0 =0

(64)

The first equation in the above set may be written as:

/0 °
< (V%) =0 @)
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o
Therefore ¥ 755 ? is a constant, i.e. the total angular
velocity component along the body centerline does not change
during the motion. This condition may be considered as an
initial condition for the motion,

In order to obtain solutions, as before, @ and¢ may be
assumed as small, With ;// 4., the linearized equations of
motion may be written as:

Ly 6 - ._z—flf+/w,x 7+ Kg 6

§Z°+IZ.QG-M/,>/ +k;,;ﬂ
an+/ww% & X, =
ﬂ¢ ﬁ%b;ﬂ + K ), = 0

0

5

(66)

It may be noted that O, @, Xo and ), themselves serve as
generalized coordinates so that no transformation of the
nature used before in the Perissogyro vibration absorber is
necessary, Clearly, such a simplification is the direct re-

sult of the cross pivots being fixed in the X'ly and Z
system, 44 .

cwé
As before, assuming Steady-state solutions O=6o€ b ?
= @, e TWE s XosXo€TRE , ¥ =), e*wé | and 4=7¢€ s
the null equation and the characgerlstlc equation may be ob-
tained., Thus

— - - - W‘ -

z 2 f

Kg‘Ix“ -t T’ZJLID -MA ) 6 0

. z 2

i
z = 2
0 M 0 k-7 y | |ol| @D

z = 2




X,
From Equation (67),§a of;may be shown to be (2915 the
determinant of the coefficient matrix): '

__2_,)(& = (4~ Iy Zg (Fo' 1) (5 -Ty) +M2A1“7" (We™ty) g4
Fo
(68)

Thus, the null equation when the spring rates KQ,,K'and K}
are identically zero may be shown to reduce to: s

(69)
Similarly, the characteristic equation may be obtained

by letting 8::0 s i.e.
“‘(Ke"wav("fga“zx”z/(Srﬁ”i/(kx—/‘?”z/ 7~
(Ko Zr W® ) (kx= T MR "1 (& ”"7“’7(’(’7'5“2/%‘4“’
2 = 2) .22 4 4,4, 8 _
# (k=25 (k= ) w4 0= P00 o

Setting all the spring rates to zero, Equation (70) may
be simplified as

AT
0 = Z
JL IX__ MZAZ
7 (71)
so that the ratio
~ 2
Wy //,, MA

\ & M Iy (72)
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i.e. a)n A,A%L

An examination of Figure 4 indicates that the generalized
coordinates 7, € for the Perissogyro are written in terms of the
angular oscillations 4, in the rotating system of coordinates.
Since the pivots in the configuration shown in Figure 2 do not
rotate, & and @ themselves serve as generalized coordinates in
this case., Thus, the equations of motion are very similar to
Equation (24) and the null Equation (69) for this configuration
coincides with Equation (32) of the Perissogyro. By virtue of
the transformation Equation (21), the angular oscillatory re-~
sponses in the two devices will, however, be different. In
terms of null characteristics, the configuration shown in Fig-
ure 2 is identical to that of Figure 1, Therefore, further

discussion will be confined to the Perissogyro vibration ab-
sorber omnly.
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CORIOLIS VIBRATION ABSORBER

The analysis presented below pertains to the configuration
shown in Figure 3, Two inertial elements are arranged in such
a manner that their pivotal axes are at right angles to each
other, As in the case of the configuration shown in Figure 1,
the entire system rotates in unison, The device is designated
as "Coriolis Vibration Absorber'. It is evident that the
governing equations of motion for the Coriolis Vibration Ab-
sorber can be obtained directly from those of the ''Perissogyro
Vibration Absorber', with minor modifications, Since the latter
represents the case of an inertial element which can have angular
oscillations about two axes, it is only necessary to suppress
one of these freedoms of angular oscillations, in order to de-
scribe one element of the Coriolis absorber, Thus for each
element, the governing linear equations of motion can be written
directly from the set of Equations (12) as follows:

. 2 _ . )
Ig‘: 5 14 (./I-Ziwl)fi)gl: —/_/17(, h; c%‘ Xy 1M he 5{//‘. Y, +kc6; =0

=027
where 6; represents the amplitude of angular oscillation of the
inertial element, In the above equation, the coordinates Xo, Y
represent as before, the amplitude of vibrations along the‘xﬁ
and &eaxes and are common to the entire system,

(73)

Similarly the equations of motion corresponding to the co-
ordinates xo and Y, for each element, may be written as

== &0 ]

0 2 °

(74)
and
== 00 oo . 2 o
M Yot MecheSy, 00 =L Mehi Sy, 6 F ALK Gy b4 Ky, = 0 (75

where /) = Fx K - Ky k. - Kx
X’ - Ve -7 X¢
(4 ’n ¢ 77 77

Equations (74) and (75) for each element may be combined in
the following manner to represent all the elements, i.e,,

(470t ) X + (74, > 6 + M, hcy, é;,L.....)

2 s °
—-L [M/A/Cgu/ G+t hoCy O ) — 3L (M,é,sgp/ﬁyz haSy, OpF ) (76)
7L k% X0== f;
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and .
(Wt - )70 + (Mhry 5’/%/’/ 42 p, bt o)~ (hSp b +H 45, 027 )

o
(77)
As before, in order to reduce the governing equations of
motion into a set of linear differential equations with con-

stant coefficients, each of the set of Equations (73) is mul-
tiplled by.§ ; and the resulting set is added to obtain

((—].%y +f7 sy,az +nJZ {( -1&)2%,¢%-+ 54a 1%:)S%éez¥uug.;}.+
(M//’)I SWI Cy/l o+ Mz /Iz_ S'ch%-f.. --/) )'(o ‘/‘ (M/A/S‘ﬁ C{”/ 7LM2 Az jyz CPZ?‘/)/D

+ (KiCy & + kaCp, by 4+ ) =0
(78)

A similar equation is obtained by multiplying Equation (73) by
and adding the resulting set to obtain

(Iylc " 2y G, G, - ) At {(Iz/—rx//) Cy b1 (IZZ-IXZ)C%_ 5271----} #
_’L(M//’I C¢7+MZ/’Z Cy/i‘/' ) XD /- (/‘7//4/5,1/ ¥ '/"Mzbz ‘S?f/ch”z /)’o

| (79)

Equations (76), (77), (78) and (79) represent the governing
equations of motion for n inertial elements connected together
at a common location on a vibrating structure.g,® ---- define
the relative orientations of the elements at all times.

The periodic coefficients in the above set of equations

may be removed by suitable transformation of coordinates, Such
a transformation is shown below: ~

-g/‘l.._ e/s,,,/ F oSy + -

?1.: GIC‘V/“}LGZC?Z_’F.._.
(80)
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Omitting the details of algebraic manipulation, Equa-
tions (78) and (79) may be written in terms of the trans-
formed generalized coordinates ¥f,,%, and x,, Y, as follows.
In the following M =M = - =M and f,=hp=- =p and,elg/(z I

z)}-_; I’za JOPS ’ 1)',=IX;—

2

I)’ (_?/ —"2‘”‘?2-'""12?/) o+ (Iz‘zx)}", -+ M4 [.S},/C%,ﬁs%cﬁ £ ) Xy
' 2 2 0s .
+M/7(S'(///+S$”z+"") >/a+/<§;_:o o
and ., 0 2 2 .2 s oo
I)' (€1+°7“0'?/”‘/L?z) + L (l:z’rx//fz + Mh (Cy;/-/-cy,z+--—-~) X,
-+ Mh (S‘SU/CS”/ +5'VZCV’Z+”“) X, 7‘-/(}:29-.0

(82)
Considering only two inertial elements, as shown in Figure 3,

)= and ¢=@+7, . With these values for ¢/, and ¢,
Equations (81) and (82) reduce to

T (5 -24%r48,) +0 (-2 )5 +0h Yy K = o

(83)
Iy (3,4 245,-0%, ) +-0° (T )5, 410 &, +K%, = o .
Similarly, Equations (76) and (77) reduce to
/‘7)(0 + Mh ?2, +Kx Xo = Fx (85)
and My, + W%, + Ky = o
(86)

Assuming steady-state oscillations, the null and char-
acteristic equations are derived in a manner similar to that
shown for the '"Perissogyro Vibration Absorber' and are pre-
sented below,

The equation that determines the null frequencies for
the Coriolis absorber is
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.d7£~?kMI %M}}-#
6\)4'[/"71 (/CTfIﬂ-) ~ Ky /—-ZMI 3 Kpr A7 "X"LZ)’)ﬂ S
ot [ ) s 205, § 0y T m) i ]

- 2
K I.A_Z—I-K }
gj )/( TJ

(87)

and the equation that determines the natural frequencies is
&/ = 2,2\% 6 ”
T . / - z t)—“

ZIM‘Mlzh/zﬂz + Zkr (MZ.Z MM/ 4/2) 7(«—2,1,},(7‘ A "L-Z)/VA
(88)

—+ (K+Ky){(kT+IA1)/M/A/’ZMIy) 4/‘7“/‘4}

_ o~
— Mz(kr fzﬁzjj += [—M(kvak//)(krvtrﬂ"jz+

2K Ky Ty gkr (Z3-1, *’7/ f] Ky &, (kp+ 1)
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EXPERIMENTAL SETUP AND PROCEDURES

The overall purpose of the experimentation was to obtain
reasonable confirmation of the theoretical development of the
Perissogyro Vibration Absorber. In order to accomplish this,
an absorber was designed using a Hooke's Joint, one end of
which is connected to a synchronous motor and the other to a
circular aluminum plate at one end of a steel rod, Details
such as the weights, dimensions, etc., of the single Perisso-
gyro are listed in Table 1. The schematic and a photograph
of the setup are shown in Figures 6 and 7, The speed (rpm)
and the direction of rotation of the motor could be controlled
at either 1800 rpm or 3600 rpm, The entire absorber was then
mounted on two shafts which rotate in opposite directions in
order to remove the effect of friction forces along the direc-
tion of oscillation, Plunger springs were mounted laterally
to provide lateral spring rate.

A 50-pound shaker was used to excite the system., Two
'MB velocity pickups were mounted on the base of the Perisso-
gyro in the direction of excitation and perpendicular to it,
The outputs of the pickups were fed to an oscilloscope from
which the results were recorded manually, On some tests,
actual traces of the output were obtained to facilitate dis-
cussion of results, ‘

In order to compare the theoretical results with the
experimental results, it was necessary to determine the actual
spring rate in the lateral direction, This was measured by
means of a simple experiment, the results of which are shown
in Figure 8, This load-displacement curve being slightly non-
linear, the spring rate was approximated to be around 600
pounds/inch,

In order to experimentally determine the variation of
antiresonant frequency with the speed of the gyro wheel, the
excitation frequency was set at a particular value and the
motor running at 3600 rpm was turned off, As the motor con-
tinued to decelerate, the actual instantaneous rpm was read
on an electronic counter when the null was located on the
oscilloscope, This procedure was repeated for various values
of the excitation frequency, A comparison of the null-rpm
characteristics predicted by theory (with K, as parameter)
with those obtained from experiment is presented in Figure 9,
It may be noted that the latter results approximate closely
to the former at KY: boo #—/md., .
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Figure 6. Schematic of the Experimental Setup



Figure 7,

Photograph of the Experimental
Setup of the Perissogyro
Vibration Absorber
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One of the problems that was encountered during ex-~
perimentation pertains to self-excited oscillations of the
‘Perissogyro, These oscillations were at times quite violent
and repeated trials were necessary before reasonably satis-
factory conditions were obtained, The linear theory does not
suggest possibilities of any such apparently unstable con-
ditions, Further detailed experimental and theoretical in-~
. vestigations would be necessary to obtain a fully satisfactory
explanation of this problen,

The photograph of the setup for testing the double Perisso-~
gyro vibration absorber is shown in Figure 10, Two single
Perissogyros are mounted side by side and rigidly connected
together by means of a connecting plate. The experimental pro-
cedures were similar to those adopted in the tests on single
Perissogyro vibration absorber,

Preliminary tests were performed using the same dimensions
as those of the single Perissogyro device, This resulted in
self-excited oscillations of the gyro disc, which were con-
sidered unsatisfactory to obtain reasonable data. The length
of the shaft was reduced and the aluminum gyro disc was replaced
by a steel plate, The details of the double Perissogyro including
the weights, etc, are tabulated in Table 2, These modifications
improved the conditions considerably, and therefore, the data
presented here were obtained for the double Perissogyro con-
figuration whose dimensions are as shown in Table 2,

A major problem that was encountered during the tests on
the double Perissogyro was that of an angular oscillation of
the entire device about a vertical axis of symmetry. Thus, part
of the energy was transferred to this rotational motion, It may
be recalled that in the theoretical analysis, this additional
degree of freedom has not been considered, The experimental
data seems to be considerably influenced by this undesirable
oscillation, Preliminary attempts to overcome this phenomenon
have failed. This phenomenon resulted in producing beats so
that a rather laborious data reduction was necessary to obtain
the amplitudes and frequencies of oscillation of the double
Perissogyro,

Some of the traces obtained during the tests are presented
in Figures 11 and 12. Because of the presence of angular
oscillations about a vertical axis referred to earlier, null-

rpm characteristics of the double Perissogyro could not be
obtained,
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TABLE 1

Experimental Model of the Single Perissogyro Absorber

Gyro Disc

Thickness

Weight

of

Length of

Weight
Weight
Weight
Weight
Weight
Weight

Weight

of
of
of
of
of
of
of

of the disc
gyro disc
steel rod
motor assembly
steel rod
universal joint
top plate
connecting rod
pick-ups'

shaker armature

Aluminum Plate 8" Dia,

1/2"
2,44%
5-1/2"
24,.2#
.625#

. 24#
1,45#
1,50#
1,60#
2,00#



TABLE 2

Experimental Model for the Double Perissogyro Absorber

Gyro Disc Steel Plate 8" Dia.
Thickness of the disc 1/2"
Weight of gyro disc 6,9#
Length of steel rod 3.75"
Weight of motor assembly 48.4#k
Weight of two steel rods o 12#
Weight of two universals . 48#

Weight of top plate 2.90#



RESULTS AND DISCUSSION

Figures 13 and 14 show the principal features of the Perisso-
gyro Vibration Absorber., Dimensionless values of amplitude are
obtained by dividing the measured output by corresponding values
obtained by shaking the Perissogyro absorber with the motor turned
off. The latter data is termed Xp and indicates the response of
the absorber as a pendulum, There is reasonable agreement between
the theoretical and experimental results,

An examination of Figure 9 indicates that the theoretical
null-rpm curves have two branches, one corresponding to a lower
null and the other corresponding to a higher null. From the null
equation for the single Perissogyro Vibration Absorber with/(=0=kx
i.,e.

= 2 ==
ot B-E) s (0 m F 5 ) kv 2’z
I, M \ ZF Mh ' M Mh bt (89)

It can be shown that there exist two null frequencies for each.d,
resulting in two distinct branches for the null-rpm curves, The
lower branches approach asymptotically (i.e. as /ZL-»>@ ), the
value k»aﬁ whereas the upper branches approach asymptotically

= _2 5 -
MIZ’JZ/IX (M Zx-m%?) (90)

2 2 = %z
Also D=0, © = kr/(/’? - " /rx are the so-
called static frequencies (i.e.,” when —/2=¢ ), The latter are the
beginning values for the lower and upper branches respectively.,
An examination of Equation (89) indicates that as &,-» @ , the
null frequencies approach 1 Zz/zZy , which represénts also
the null frequencies for the '"Double Perissogyro', This feature
can be observed from Figure 9, where the null-rpm curves for the
""Single Perissogyro' approach the corresponding curve for the
"Double Perissogyro' as Ky—> @, This is appropriate in view
of the fact that a '"Double Perissogyro'" has always a null in
the lateral direction; a condition which corresponds to having
infinite lateral spring rate,

From Figures 13 and 14 it is evident that experimental
results predict only the lower nulls., This feature was ob-
served in all the experiments although a tendency to reach the
higher nulls was noticeable., Such a tendency can be seen by
examining the output trace presented in Figure 15,
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Figures 16 and 17 show the principal features of the Double
Perissogyro vibration absorber, As before, dimensionless values
(X/Xf ) are plotted against the forcing frequencies and compared
with corresponding values obtained by experiment. Unlike the
Single Perissogyro, the Double Perissogyro provides a single null,
Because of the problems referred to earlier in the report, repeated
tests were necessary to obtain experimental results on the Double
Perissogyro. Results of four such tests are plotted in Figures
16 and 17, The general trend shown by these experimental obser-
vations conform nearly to those suggested by theory. Actual nulls
could not be determined accurately because of the influence of
angular oscillations of the entire device (yaw motion) which re-
sulted in a beating phenomenon. Limitations of time imposed on
this project did not permit more thorough experimental work,

As observed earlier, one of the unique characteristics of a
Gyroscopic Vibration Absorber is the synchronization possibilities
it provides. For the Single Perissogyro, the null-rpm . character-
istics are linear only over a limited range of gyro speeds as may
be seen from Figure 9. For the Double Perissogyro, however, the
null-rpm relationship is linear for any range of gyro speeds,
Thus a Double Perissogyro vibration absorber lends itself to
linear synchronization, in addition to providing nulls in orthog-
onal directions, Details pertaining to such synchronization are
presented at the end of this report and include the schematic of
the necessary electronic circuitry.

Some of the questions that remain unanswered pertain to (1)
self-excited oscillations that seem to start and persist in the
gyroscopes under no input conditions for certain physical param-
eters of both the Single and Double Perissogyro Vibration Absor-
bers; (2) the beat phenomenon that seems to be induced at certain
forcing frequencies on the Double Perissogyro vibration absorber,
The answers to questions such as above and an understanding of
the influences of various parameters such as mass ratios, spring
rates, gyro speeds, inertias, etc, would have to be obtained by
means of an extensive experimental program, Further theoretical
research should include a rotation coordinate for the Double

Perissogyro configuration in addition to including effects of
damping,

Preliminary studies and calculations made on the "Coriolis
Vibration Absorber'" indicated null and natural frequencies so
closely spaced that the device may be of questionable practical
value, However, detailed parametric studies would be warranted
before definite conclusions can be drawn,
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GYROSPEED SYNCHRONIZATION FOR "PERISSOGYRO VIBRATION ABSORBER"

In this section, details pertaining to synchronizing gyro-
speeds are discussed, The general problem of synchronization
may be stated as follows,

Given a relationship /5 =7£(wn) where -1 and &, represent
gyrospeed and null frequency respectively, it is required to
design an electronic circuitry which would automatically change
the gyrospeed as soon as the excitation frequency changes.

In what follows the function 7 (wp) will be assumed as linear,
i.e. /2 =Cwn where C is a constant which can be computed once
the dimensions of the absorber are known,

A simplified block diagram of the proposed gyro speed synch-
ronization system is shown in Figure 18, The reference shaft A
and the controlled shaft B each have a gear/transducer combination
to detect shaft speed. A magnetic pick-up (transducer) placed in
close proximity to the teeth of a ferro-magnetic gear would be
employed to generate an electrical signal whose frequency is pro-
portional to the shaft speed. Since the transducers are rate
sensitive, the output signal will vary in amplitude as well as
frequency with shaft speed., Signal amplitude is also affected
by gear tooth shape and tooth-to-transducer clearance, However,
the speed control circuitry is only sensitive to the frequencies
of the two incoming signals. Relative frequency detection is
achieved by comparing the length of time required by each trans-
ducer signal to complete one cycle., This comparison is con-
tinuously repeated and averaged to produce a signal whose magnitude
at any given time is proportional to the difference between the
two frequencies, The system operates as a closed loop speed reg-
ulating servomechanism with short term proportional control plus
integral compensation,

Amplifiers Al and A2 in Figure 18 amplify and amplitude
limit their respective transducer signals which are then coupled
to the frequency detection circuits, The logic circuitry for
each channel is identical and is composed of two clocked flip-
flops which operate on the master/slave principle, The master/
slave flip-flops allows information to enter the master while
the trigger is high and transfers to the slave when the trigger
goes low, Since operation depends only on voltage levels, any
sort of wave shape may be used as trigger signals,
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Assume flip-flops FFl and FF2 initially in the clear mode
with the set outputs low and the clear outputs high, The high
clear output from FF2 is applied to the set input of FF1l, how-
ever, assuming there is no trigger present FF1l cannot be set,

The first amplitude limited pulse from Al is simultaneously ap-~
plied to the trigger inputs of FFl and FF2, When this trigger

is high, the master of FFl is set but the output does not change
state until the slave is set on the trailing edge of the trigger
pulse, When the first trigger pulse is completed, the set input
of FFl is transferred to the set output and the clear output of
FFl1 becomes low., Since there was no set input to FF2, the trigger
pulse had no effect on the output of FF2, After the first trigger
pulse, there is a high set input to FF2 from the set output of FFl.

The second pulse from Al cannot change the condition of FF1l
since it has been previously set, however, FF2 can now be set since
it has a high set input. Once both flip-flops have been set, fur-
ther input pulses can have no affect on them until they are cleared,
Since it took two comsecutive input pulses to set both flip-~flops,
the time between the setting of FF1l and FF2 is equal to one input
signal cycle or period, Gate 1 output is high only when FFl is
set and FF2 is clear, therefore, this pulse is equal in length
to one input signal period, The logic circuitry for the B shaft
signal performs in the same manner., The output pulses from Gates
1 and 2 are subtracted in summing amplifier A3 and averaged to
produce a signal whose value is proportional to the difference
in speed between shafts A and B,

When all four flip-flops have been set (one cycle each of
A and B have been sampled), Gate 3 has a high on both inputs and
enables the single shot flip-flop to clear all four flip-flops
through their respective "direct-clear'" inputs, The direct-clear
input (€] ) overrides any normal synchronous set or clear signals,
thus preventing simultaneocus set and clear commands from pro-
ducing unreliable outputs, Once all flip-flops have been reset
(cleared), the sampling process is again repeated and the periods
for signals A and B are compared on a one-to-one basis to produce
an average error signal for the motor control circuit,

The synchronization circuitry is of the proportional plus
integral type. Proportional control provides the short term
stability required to cope with shaft speed transients, however,
proportional only control requires a finite error to maintain
servo motor drive, Integral control compensates for this error
by adjusting its output to maintain shaft speed with zero error
under steady state conditions, '

It is possible to have shaft B operate at any multiple of
shaft A's speed. This can be achieved in two ways,
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The first method is to have the number of gear teeth on
each shaft different so that the pick-up frequency will be
identical at the desired speed ratios, e.g. if there were twice
as many teeth on Gear B, shaft B would only have to rotate half
as fast as shaft A to produce zero error signal (same output
frequency). The second method is to bias the error signal at
amplifier A3 to produce zero output at the desired speed or fre-
quency differential; this could be accomplished with the ''Speed
Multiplier ADJ" shown in Figure 18,

The coarse speed adjustment shown in Figure 18 allows the
speed of shaft B to be preset to its approximate operating value,
The error detection circuits operate as a fine tuning and trim
the speed of shaft B to the desired multiple of shaft A,
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SUMMARY

The analysis of parallel damped dynamic vibration absorb-
ers is presented, The system considered is essentially a mod-
ification of the conventional damped vibration absorber and
consists of adding, in parallel, a subsidiary undamped absorber
mass in addition to the damped absorber mass, The analysis
clearly shows that it is possible to obtain an undamped anti-
resonance in a dynamic absorber system which exhibits a well-
damped resonance, While the bandwidth of frequencies between
the damped peaks is not significantly increased, the amplitudes
of the main mass are considerably smaller within the operational
range of the absorber. The damped absorber mass and the main
mass attain null simultaneously so that the vibratory force is
transmitted to the undamped absorber,

Numerical results are presented for the special case when
the absorber masses have the same magnitude, Two cases of tuning
have been considered:

(1) when the absorber masses are tuned to the frequency
of the main mass, and

(2) when the absorber masses are tuned to the so-called
favorable tuning frequency.

Comparison of the results with those of the conventional
absorber indicates that the parallel damped dynamic vibration
absorber has definite advantages over the conventional damped
vibration absorber,
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INTRODUCT ION

The conventional dynamic vibration absorber, first proposed
by Frahm in 1909, is still quite widely used in practice because
of its simplicity. The main drawback of the Frahm Absorber lies
in the narrow bandwidth of excitation frequencies within which
the absorber is effective. The purpose of many investigations
that have followed since the introduction of Frahm absorbers has
been either:

(1) to improve the effectiveness of the conventional
absorber by suitable modification, or

(2) to invent entirely different and better devices in
the hope of replacing the conventional absorber,

Gyroscopic vibration absorbers and impact dampers are but a few
of the new devices that belong to the latter group. However,
the only modification considered so far in the former group is
the addition of damping to the absorber mass., The purpose of
this report is to examine a further modification of the conven-
tional absorber. Such a modification consists of adding, in
parallel, a subsidiary undamped absorber mass in addition to the
damped absorber mass., The system considered is shown in Figure 1,

The analysis that follows consists mainly of:

(1) the derivation of the governing equations of
motion, and

(2) derivation of the condition for the amplitude of
the main mass to be independent of the damping
ratio .

The latter condition provides the frequencies at which the
amplitudes of the main mass are independent of the damping

ratio ¢/¢. . 1In addition, for the particular case of practical
interest (i.e. when the absorber masses and the springs have

the same value), the so-called favorable tuning (i.e. the tuning
frequency at which the absolute value of the amplitudes independ-~
ent ofcyc is the same) has been determined in the form of a
simple equation., Under this favorable tuning, the mass ratio
required to provide the greatest spread between the frequencies
is determined, Also, the equation which provides the optimum
damping ratio (i.e. the ratloch- at which the slope of the
response curve is zero) has been Cderived,

Some of the equations in the analysis are rather lengthy
and forbid hand computation, Therefore, the entire problem
has been programmed on the computer, Numerical results ob-
tained are presented graphically in dimensionless form,
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ANALYSIS

The system under consideration with the forces acting on
each mass is shown in Figures 1 and 2. The main mass is assumed
to be subjected to the action of a periodic force{:efd& Only
steady state response is considered. °

From Figure 2, the equations of motion can be;readily

written as:
m,'k,-i-h,x‘-t-hz(x‘-x?_)*lzs (Xr‘)(s) + C (S‘l'—)’(j):foe‘mt

. mZ')ZZ"' hz (xa"xg) ,= 0

m3>'<'3 +tky (X3-X\)+C(5‘3”>’<;)‘-’0 (1)

For the steady-state response, the solutions X,, y;_ and X}

may be assumed as -
AN

X, = Xzoecwt

, twt

Substituting (2) in (1), a set of simultaneous equations in the
unknowns X, x, and X; may be obtained, These equations may
be represented in the form of a symmetric matrix as follows:

— I R
(k, +k2+k3*‘ m, w2'+C.('.OO ) (“‘ hZ.) - (k3+c Lw) xl _fa
(‘k3) (kz‘fﬂzﬁ?) (0) X1 0
~(Ry+lie) (0 GegmchCiw)|| X3 || o
I —_ e d L
(3)
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Figure 1. Parallel Vibration Absorber
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masses and € is the damping constant.
X,/7£’ may be shown to be of the form:
4]

Where 'é/ , k2, Rs are spring rates, 7, M., ™3 are the
Solving for X, from (3)

2 2
x, _A+iB _ [A+ B
‘;0 C\*('/D(

(4)

where

A‘ = kzh3" kzm3o.>z + hmeOJz* MMz 004
B\ = C(JO (Rz- V"z_mz)
C, = (h& Rytka- M)A + k:_ (o= ky )+ kza (mzes k)
D, = Cw{A;«(k;mzw‘)Ckwrkz'hﬂ'mw‘(kﬁvnzwz)-kzz} 5

In order to represent the amplitude in dimensionless form, the

numerator in Equation (4) may be divided by A.£; and the denomi-

nator by /?,,{7z ; the resulting expression for X/Y may be written
sy

as follows:

(-2.-4 ﬁa)“z & 0-4)

A
X g2 2 2132 g% 9t
ST [{Ggtt™ ( - Loy e ‘)“ﬁ‘( )il (- b him) ()
4:.13 PRI S I S J’ah}] (6)
'F "4 £ My 52 Hy £2
8:.9-).. 5: W3 = We Ay = /ﬂz_ A, 2, - __é)_
where w ' e PTG Tm 3"7" .
X, = _f_"_ (Static displacement of main mass under
ST ,él the force £, ).

Similarly Xz X ., and x3/x,,r may be represented in dimensionless form,

Representihg*the dénominator in Equation (6) by D

- _ 3 . 9 _
Danr (l F>*chr3—i (7)
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and

3" 205
D;(_‘?_S.T., (,,F){chﬁwl

It can be easily shown thatx)&”-is:independent of the
damping ratio provided (ﬁ,/c,).—_- 1(/3,/9, .Thus, the equations

AD +£BC=0 (9

may be used to obtain the values of at which the amplitudes

of the main mass are independent of the damping ratioC, . Sub~
stituting the expressions for A, B,, C, and 2, from Equation
(6) in Equation (9), the resulting equations may be shown to be:

TR GEIPRCE DI DU G R “)
— apy W 3 (R-gD (1= g b N+ (2-g) {u,n
(ﬁ’z_ ;;2)+M3$:4 (ayw_ )} =0

Omitting the minor details of calculation, the above equation
may be shown to reduce to (when the minus sign is chosen):

M g (W-g* Y.o (11)

This is a trivial, but true, equation, According to
Equation (11), the vibratory displacement of the main mass, X/,
is independent of damping when g:=o , i.e., when the forcing
frequency is zero or when/7=7~ , i.e. when the forcing frequency
is the same as the natural frequency of the undamped absorber
mass,

(8)

(10)

Thus, the required non-trivial equation is obtained by

choosing the plus sign in Equation (10), and may be shown to
be:

5 (2445)- G fa (e 28 Ve 2ughle 2 (£ W0)42 §
2 ; 1 _ ¢ 2 -
PGS (Featraty )+ (FHRD} = 247RT = 0 .

2

Equation (12) is a cubic in ?‘ and for given values of,/72/'AG s
.7£ and 4 , it may be solved to obtain the values of F at which
Xi/Xisr is independent of Cp ., Using these values of 9 , the

amplitudes of the main mass may be computed from Equation (6),
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Although further analysis may proceed with all the param-
eters in their most general form, it is found that considerable
simplification in computation results if the absorber masses
and the corresponding spring rates are assumed to be equal.
Also, such an assumption leads to one case of practical in-
terest. With/azf/{,i/i and £,=4; , Equation (12) reduces to

3 @r)-g {Fl s fras o o 2f- 0 s

With a little algebraic manipulation, Equation (13) may be shown
to bhe:

{34(z+ﬂ)~25z(24«¥2+¥2+ D+ zf‘} (9~f")=0

Since ;-.—.73 corresponds to the null, the dimensionless frequencies,
, at which the amplitudes &A&”.are independent of damping are
given by

(14)

2 1 T z
34__ 24 [Zfo +{ +l) + 25 -0
+ 4 24N (15)

Equation (15) is a quadratic in j}'and provides the two required
values of § (say 3, and 2, ). Using the values of 2, and 7. ,
the corresponding values of the ratioXy&mr.may be computed from
a simplified equation obtained from Equation (6), i.e,

<x. ) _ §'- g*
“sr/3d,  9%-9% (v $Ev2uFhET (16)

Equation (16) is obtained from the general expression (6)

by making the assumptions fMa=l3=4 , #=/ , and by letting

Cy=0 ., The latter assumption is valid because at 2, and 2, ,
Xb/%;r is independent of (, .

The amplitudes at 2, and }» , as computed from Equation (16)
are, in general, not equal. In order to avoid the necessity to
refer to two different amplitudes and make comparisons at every
stage, the absolute value of these amplitudes may be forced to
be equal at ?, and gl . Because it is not apparent whether the
amplitudes at 2 and 2, are of the same sign, the general require-
ment may be written as:

£ 91 R -5
=I7 7
(52- IO g+ 24 §%) - 24F% 77 (52 41 Y9, + 24 f )-2454 gy
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The solution of Equation (17) provides the value of the
tuning () such that the absolute amplitude of the main mass
t % is the same as that at 7, 7 and #, are the magnitudes
Le dimensionless frequency (forcing frequency/natural fre-
quency of the main mass) at which the amplitudes of the main mass
are independent of damping in the systen,

Omitting the details of calculation, the required equations

may be shown to be »
(250 ) (-9 )v 245% < 0 (18)

with the + sign and

(PN (o ot )- 24 (2582 0

with the - sign,

Clearly, only one of these equations is valid, The valid
equation may be found as follows,

The roots ?) and 7, of the quadratic Equation (15) satisfy
the conditions

z 2 qqfft 2t a2
8'+37,’ 7_,*\’/*4(

2.
2.t 2 ¥
fj' gq_ - 2_+,(,( (20)
Equation (18) may be written as:
1 g2\¢t 21 4.
(8+3:)-599, - (1+24)§%:0 (21)
Substitution of (20) in (21) leads to
4 2z
2 +4)=0 (22)
Equation (22) is satisfied only when the absorbers have an un-
coupled natural frequency of zero (F£=¢ ), which is a trivial
condition. Thus, the amplitudes (at 9, and g, ) are opposite

in sign, and the tuning £ required to make them equal is obtained
from Equation (19) written in the form shown below:

(g {(Ghe gt 245% g242- 25%- 57
+ 24797 (1+24PZ) + 2§57 =

and

(23)
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2 2.
As before, substituting the expressions for Ht+ and

7f7f from Equation (20) in Equation (23), the resulting
equation may be shown to be: '
2 =~
= ‘ =z '
(1+24) (24)

The required tuning, the so-called favorable tuning, which
gives equal amplitudes can be calculated from Equation (24).

Under the '"favorable tuning" condition, the values of /2 and
7. may be computed from Equation (14), In Equation (14), .;(5;9;
however, when~f is prescribed as ''favorable tuning“,;: (&)
only. It would be of interest to determine the mass 'ratid A which
provides the greatest difference between ? and ; . This has
been done as follows: / z

2 adb i1+ 02 F- 287 (240)

9
2+ M
(25)
)/ -4 2 2
Substituting the form of 7['.—_- —_—, 2/ and ;z. may be
shown to be /%%ﬂ

32: (244)+ V34 (244) , SZ:Q.-HO— {34 (2+4)
N CETISEY e (1v24) (g

1.2 2 V3u (2+40)
e 3T T By ()

(27)
L
%

2 2 .
(}Z‘j&l) may be shown to be equal to

2
/= ZU -2 U (28)

Setting Equation (28) to zero, the required value of &
may be shown to be .366, i.e., 36.6% of the main mass is re-
quired for the absorber mass in order to attain a maximum
bandwidth (2;-3,2 . Examining the second derivative of

FAS e , it Is clear that #=.36 provides the condition
for 9%3' to be a maximum., However, such a mass ratio is
too high and prohibitive to be of any practical use.
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A similar expression can be derived for the case when1£=/ o
For this case:

g2 gt V24 (3+2.4)
5 (2+4) (29)

However .__23%. (ﬂ%-jﬁ) » Sy+ b (30)

From Equation (30), it is clear that there is no positive
value of /L for which the equation is satisfied. Also, the sec-
ond derivative of 9,29} in this case is positive, indicating
a minimum condition rather than a maximum condition, Therefore

N A in this case increases continuously as A is increased
and oes not attain an absolute maximum within the meaningful

range of [ (04/(5_-5‘) o

In discussing the problem of damped vibration absorbers, it
is customary to determine "optimum amplitude" and the correspond-
ing "optimum damping"., The "optimum damping" is defined as the
damping required to obtain a zero slope of the response curve at
3 or g, . The resultlng amplitude at J, or f, is termed "optimum
amplitude" Den Hartog®, in his analysis of a damped absorber,
comments that the calculations involved in computing the "optimum
damping' are "long and tedious™, For the system described in this
report, the calculations are much longer and more tedious. The
optimum C, (CVEE ”7, is determined from the expression

g 4

The calculations shown below are for the case when 4; =4{; =

andf=h . 3% and?. are, as before, the values of 7 at which
X X is independent of C, .

/X ;)2 ﬁe%flbz

( Xisr G2/ (32)

(31)

—

where
2.

Ao = ('(2"32>

8/ = 2C, 9 (P'ﬁt)

¢, = () [ (-5 - 24 £5

2, 2

D, Zcra{ﬁ‘z(l’u‘()—&:j (\*2"0‘\'(% ’jl>_} 53,

3Den Hartog, '"Mechanical Vibrations'", Third Edition, McGraw-Hill

Book Company, 1947,
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) (C‘ D, {A‘ijj’*s' {?@} (,4 -\—5

aé, ooo
C.== + D, T 0
{ (34)

. [(A,AHB,B'J’@%;) (C,C,““DzD‘( )] =0

where the primes indicate derivatives with respect to g,

(35)

In the following, the terms appearing in (35) will be listed
in order, in their final form, and all details of calculation
will be omitted,

AN = -4 g G"jz)z (36)
BB = 40, q (F-9)(4% 38°) 37)

80 ég 5ﬁq(2+4'9 +4442)+43 (4/1.(? +

51C+ ’ZMﬁ*éc{rl) (255(341{344— 3,:({ + 2,411{‘
43404454 02) 4 287 (58 Cerizyfe+ £8 4
41»{1“7*411’?;)"25 (2?‘-#-? t 2»‘(!'8) a8y

DD = 4¢, {55 (a)* 84 (4 +3,(3 204874144
£ BS(5% 4l e 485 44 F HGuf 1)
- A48 Gﬂu”{h’o)f Py } (39)

Substituting these expressions in Equation (35), an equa-
tion for optimum damping ratio ( €, spr ) can be obtained in
in the following form:

C o V/—?ﬁ%"hl
[Coll hs -y hs (40)
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where # s hz s b3 /)4 are known functions of # and 7 and 7= iY—’»
computed at either 3, or 5. . The value of Gwpr) obtained /s
from Equation (42) at 7, is, in general, different from that

at 7, . An average value of G (,p7) is therefore proposed as
the required optimum damping ratio,
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DISCUSSION AND CONCLUSIONS

The responses of the main mass and the absorber masses
have been represented graphically as functions of the fre-
quency ratio } with damping ratio(, as parameter. Also, the
phase angles of the main mass shown are computed and represented
graphically. The responses for /:/! and f:ﬁ, are-shown separately.

In order to judge the effectiveness of the parallel vibration
absorber, the responses of the conventional absorber are compared
with those of the corresponding parallel vibration absorber, The
corresponding parallel vibration absorber is defined as the parallel
vibration absorber whose absorber masses are each equal to one-~half
of the absorber mass of the conventional absorber,

An examination of Figure 3 shows the principal features of
the comparison, The introduction of an undamped absorber mass,
in addition to the damped absorber mass, has made it possible to
obtain an undamped antiresonance in a dynamic absorber system which
- exhibits a well-damped resonance, This is an expected result and
is decidedly an advantage, However, the amplitudes increase rather
sharply for small changes in the frequency ratio % , thus retaining
the disadvantages of the conventional damped absorbers, Therefore,
both the absorbers permit only very small tolerances in the change
of the frequency ratio } , Nevertheless, the parallel absorber
appears to be superior to the conventional damped absorber if a
comparison is made between the response curves for a damping ratio
such as C, =°32 , The conventional absorber has, for this ratio
of Cr , prohibitively large amplitudes within the operational range
of the vibration absorber., Also, the characteristic feature of
the response curve of the conventional absorber changes signifi-
cantly in that the two smaller peaks for a low damping ratio such
as for £, =:/ tend to merge to a single, but larger, peak when C,.
is increased. On the other hand, in the case of the parallel
absorber, the characteristic features (i,e. two damped peaks and
a null) remain intact when the damping is changed and the amp-
litudes within the operational range of frequencies are con-
siderably smaller for higher damping ratios., Even for low damping
ratios, it may be observed that the amplitudes in the narrow range
between the peaks, P/ and (Q, , are smaller,

In view of the fact that the above advantages are obtain-
able by merely assigning one-~half of the absorber mass of the
conventional absorber as the undamped mass of the parallel ab-
sorber, the device is obviously preferable,
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Examination of the responses of the absorber masses shows
that the main mass and the damped mass attain antiresonance
simultaneously, thus transmitting the vibratory force directly
to the undamped absorber mass. These response curves may be
used in the design of the springs for the absorber masses such
that the stresses induced are not too excessive,

Figure 8 represents the variations of "optimum damping"
ratio as a function of the mass ratio, Clearly, the (C),)osr
required does not vary significantly from the corresponding

(C})ofr for the conventional absorber,

The procedures used to determine the "optimum amplitude"
and "optimum damping" conform to those presented in Reference 3.
The most favorable response curve (of the main mass) is there-
fore assumed to be the one which has a zero slope at the higher
of the two points, P or Q. Accordingly, the best possible
“resonant amplitude” at optimum damping is the ordinate at that
point, However, it appears that there can be several different
ways in which optimization can be defined, For example, a tuning
- condition and a desired damping may be found such that the second
peak (i.e. at Q) may be made as small as possible, Similarly, it
may be desirable to have the first peak (i.e. at P) as small as
possible without any restriction imposed on the second peak.
Such requirements may be of practical importance although the
tuning condition obtained is not considered "favorable' according
to the definition given earlier. The conditions stated above
are, nevertheless, achievable with some judicious distribution
of and #; (instead of simply making each of them equal to one-
half of the mass of the equivalent conventional absorber).

These and other aspects of the parallel vibration absorber
are recommended for further research,
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